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A B S T R A C T

Mathematical modeling has proven to be a highly effective tool for understanding microbial metabolism for 
which in-silico and experimental studies help to quantify intracellular mechanisms and pave the way for opti
mizing the production of molecules of interest. In that context, the development of metabolic networks turns out 
to be particularly interesting despite the challenges underlying their reconstruction. While the elaboration of 
genome-scale networks is computationally costly, small networks are often oversimplified and important bio
logical mechanisms might be omitted, which limits their use in industrial applications. For this purpose, this 
study proposes a constructive bottom-up approach for the identification of metabolic networks of intermediate 
size, typically comprised of a couple of hundred reactions. It combines basic biological knowledge and a series of 
constraint-based methods in an iterative strategy, enabling the refinement of the network definition. The 
network is first validated using in-silico data, and subsequently refined using experimental data to enhance its 
biological relevance. Several case studies have been addressed to assess the efficiency of the methodology, and 
this paper focuses on the modeling of photosynthetic cyanobacteria Arthrospira sp. PCC 8005. The procedure is 
effective and provides promising results and metabolic analyses show consistent predictive capabilities of the 
network, in concordance with existing studies.

1. Background

Metabolic networks are used in various applications in biotech
nology, medicine, and environmental science and enable scientists to 
gain insights into the operation of organisms and processes of energy 
production, nutrient utilization, and waste elimination, among others. 
However, constructing a metabolic network requires integrating high- 
quality, reliable, and available data from multiple sources, including 
genomics, transcriptomics, proteomics, and metabolomics. In addition, 
metabolic networks are highly interconnected, making their recon
struction time-consuming and their analyses computationally intensive. 
Besides, to ensure their accuracy and predictive capability, an iterative 
process of model refinement is needed, comparing model predictions 
with experimental observations and leading to updating the network 
structure when necessary.

With the advances in sequencing techniques and genome annotation 
methods, complete genome sequences are available for many 

microorganisms, enabling the generation of genome-scale metabolic 
reconstructions and leading to genome-scale metabolic models [1–3]. 
However, to ensure the consistency of such reconstructions and 
comprehend the organizational principles of metabolic interactions 
within cellular networks, examination of the structural and topological 
properties of metabolic networks is important. By the past, many studies 
[4–7] have covered this issue, e.g., the identification of groups of re
actions unable to carry a flux due to the stoichiometry of the network 
under steady-state conditions or the establishment of enzyme subsets, i. 
e., groups of reactions operating together in fixed flux proportions at 
steady-state. Such analyses enable identifying potentially missing re
actions as well as reactions under coordinated regulation and allow a 
continuous refinement of metabolic reconstructions through an iterative 
model-building process [8–11]. Similarly, frameworks based on convex 
analysis have been developed to examine structural and topological 
network properties. Those methods are mainly based on a series of 
constraints that govern the operation of the metabolic network at 
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steady-state, including stoichiometric and thermodynamic constraints, 
which limit the range of possible network behaviors corresponding to 
different metabolic phenotypes. For instance, flux balance analysis is a 
mathematical approach for analyzing the flow of metabolites through 
the network and identifies an optimal flux distribution characterizing a 
particular phenotype [12]. Other techniques rely on the concept of 
extreme pathways [13] and elementary modes [14,15] and are often 
used as a quantitative measure of network robustness. However, even if 
constraint-based modeling and analysis have attracted huge interest in 
the last decades, most algorithms for the identification of elementary 
modes and extreme pathways do not scale well for genome-scale models 
of complex microorganisms due to the combinatorial explosion of the 
identified modes. In that context, several mathematical techniques and 
algorithms have emerged recently to reduce the number of modes and 
identify the most informative ones [16,17]. Also, besides these popular 
approaches, flux coupling analysis is concerned with describing de
pendencies between metabolic reactions and finding coupled reaction 
sets and blocked reactions in genome-scale metabolic systems [18,19]. 
The latter method is essentially used for exploring biological questions 
such as network evolution, gene essentiality, and gene regulation and 
requires solving a series of linear programs.

The above methods are efficient and take part in the model-building 
process. However, they require the computation of null-space matrices 
or involve the solution of a sequence of linear programs that can be 
computationally costly. Another challenge with genome-scale networks 
is the complexity involved in constructing the stoichiometric matrix, 
which serves as the foundation for many computational analyses. 
Therefore, building an accurate and balanced stoichiometric matrix can 
be time-consuming and prone to errors. Additionally, genome-scale 
networks depend on the availability of high-quality genomic data and 
comprehensive gene annotations, which are not always accessible or 
reliable, particularly for lesser-studied or newly isolated strains. 
Furthermore, although the models deduced from such networks provide 
a complete skeleton of the metabolic reactions taking place in an or
ganism, these models are difficult to use for control and optimization 
strategies because of their complexity and their dimension [20]. 
Henceforth, to facilitate the analyses and the application of control 
strategies, small-size metabolic networks have been deduced from larger 
networks by focusing only on the main metabolic functions of the mi
croorganisms [21–24,25,26]. Such networks often encompass essential 
pathways such as glycolysis, the citric acid cycle and other specific 
biosynthetic pathways and lead to simplified models that are used to 
understand the fundamental aspects of cellular metabolism and the 
principles of enzymatic activity and regulatory mechanisms. However, 
even though they are easier to manage than large-scale networks and 
require reduced computational resources, small-size metabolic networks 
are often oversimplified. Hence, important interactions that occur in the 
full network are omitted, and insights gained from the simplified net
works might not be directly generalized to more complex systems. In 
addition, the behavior and effectiveness of the network can vary 
depending on specific environmental conditions and the physiological 
state of the organism, which are key aspects that are not represented in 
small-size networks.

A middle ground is then the development of metabolic networks of 
intermediate size, which are detailed enough to capture the complexity 
of the cellular metabolism while remaining straightforward to analyze at 
the process level. These networks can be constructed by means of 
different approaches in metabolic modeling. On the one hand, top-down 
approaches start with a comprehensive genome-scale or a large model 
and aim to simplify or reduce the network by applying reduction algo
rithms and techniques like transcriptomics or proteomics-based filtering 
for further refinement [27–30]. These methods typically rely on the 
structure of the genome-scale model. For this purpose, powerful algo
rithms have emerged in recent years, such as NetworkReducer [20], 
MinNM or MetNet [31] among others. Nevertheless, these methods 
inherit many of the same limitations as genome-scale networks 

themselves (i.e., availability of genomic data, errors or gaps in the 
original genomic reconstruction, the complexity and the size of the 
original genome-scale model as well as computational challenges asso
ciated with handling large matrices). On the other hand, bottom-up 
approaches involve constructing metabolic networks by carefully 
curating reactions based on biological insight, biochemical and physi
ological data, and experimental findings. These methods often simplify 
the networks in a context-specific manner. For instance, the elaboration 
of the network can start from condition-specific metabolome data [27]
or mass spectroscopy data [32]. Then, metabolic networks are con
structed by using Gaussian Graphical Models, statistical techniques for 
dimensionality reduction [32], or optimization-based methods to infer 
the active networks [27]. Also, more recently, studies have been con
ducted to leverage both top-down and bottom-up strategies, leading to a 
flexible methodology for constructing functional and testable models. 
This hybrid approach enables enhancing model accuracy and biological 
relevance and is based on graph-based transformation and stoichio
metric and retro-synthetic analyses [33,34]. Nevertheless, it is worth 
noting that, in many cases, methods used for metabolic network con
struction (both top-down or bottom-up approaches) utilize 
genome-scale metabolic models (GEMs) as foundational components, 
though their usage can differ depending on the approach [29]. As a 
matter of fact, top-down approaches use GEMs as a starting point for 
simplification, bottom-up approaches begin with experimental data to 
construct smaller networks but still sometimes make use of GEMs to 
ensure a broader metabolic context (like redGEM and lumpGEM in [29]) 
and hybrid methods leverage both approaches using GEMs and experi
mental data to build and refine the model.

The methodology introduced in this paper offers an alternative to 
existing methods and can be considered as a constructive approach to 
derive a metabolic network. In contrast with current methods, it is a 
bottom-up approach with minimal reliance on genomic reconstructions. 
Therefore, it proves particularly valuable in cases where the strain under 
study is more specific and genomic reconstructions are not readily 
accessible in the literature. As illustrated in Fig. 1, the method is by 
essence iterative. When applicable, genomic studies are exploited only 
to identify key metabolites and detect specific reactions proper to the 
strain under study (in contrast to top-down approaches where genome- 
scale models are simplified using reduction algorithms). In that case, the 
modeling procedure is also based on lumping techniques [35–37] to 
overlook some intermediate metabolites and finally, it uses 
constraint-based methods [38–41] to ensure network consistency, as 
illustrated in Fig. 2 (more details will be given in the sequel of this 
article). Furthermore, it uses in-silico data and experimental data to 
quantify the intracellular mechanisms and refine the metabolic network 
definition.

In this study, this methodology is applied to the case of Arthrospira 
sp. PCC 8005, which is a photosynthetic prokaryote using light as an 
energy source, water as an electron donor, and CO2 as a carbon source, 
making its metabolism interesting to model. This strain has notably been 
selected as the best nutritional resource for long-haul space exploration 
missions for its ability to convert CO2 into edible biomass and oxygen 
and its ability to remove certain compounds from contaminated waters 
[42–44]. Therefore, because of its use in bioregenerative life-support 
systems, a deeper understanding of the metabolic capabilities of this 
organism is essential to fully harness its biotechnological potential. Also, 
studies on similar strains have been conducted in recent years, enabling 
a deep examination and assessment of the results of metabolic analyses, 
using existing studies as a benchmark. So far, the analysis of this specific 
strain has been scarce. A basic metabolic flux model containing 22 re
actions has been developed in [45] to predict rate-limiting enzymes for 
the production of γ-linolenic acid. Subsequently, a more extensive 
metabolic network for S. platensis has been identified by [46] in a 
context-specific manner. However, in addition to inconsistencies 
regarding reaction reversibility, these models did not provide the mi
croorganisms’ whole-cell characteristics and metabolic capabilities. 
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Fig. 1. Modeling procedure.

Fig. 2. Algorithmic scheme of the mathematical methods. Note that FCA is preferred to FVA for larger networks. The latter methods should give equivalent results 
(methods’ cross-validation).
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Recently, available data and genome sequences of S. platensis (different 
strains) have enabled the development of genome-scale metabolic 
models [47–49]. While the first models lack details, the others are 
difficult to comprehend. In this context, the suggested procedure bridges 
these two extremes while facilitating the learning and understanding of 
the studied strain cell’s metabolism, particularly for non-expert users 
(through a step-by-step constructive approach). After carefully refining 
the network structure, the identified metabolic network comprises 198 
reactions and 171 metabolites and includes energy aspects such as the 
proton motive force, barely outlined in existing networks [50].

The paper is organized as follows. Sec. 2 explains the complete 
methodology for the construction of mid-size metabolic networks and 
reviews the mathematical methods applied during the procedure. Sec. 3
presents the case study of Arthrospira sp. PCC 8005, emphasizes the main 
metabolic routes of the photosynthetic microorganisms and presents 
several iterations of the bottom-up method to derive the final metabolic 
network. Sec. 4 discusses the results of metabolic analyses using in-silico 
data under different light regimes and Sec. 5 validates the network 
structure against experimental data. Finally, conclusions are drawn in 
Sec. 6.

2. Constructive modeling approach

The modeling procedure is illustrated in Figs. 1 and 2. Fig. 1 positions 
the approach within the landscape of existing methods and Fig. 2 depicts 
the algorithmic scheme of the mathematical methods. The first step of 
the methodology involves collecting metabolic reactions defining the 
metabolism of the microorganism from the literature. When genome 
sequences of the strain are available, specific reactions proper to the 
strain under study might be added. In that case, lumping techniques are 
applied to overlook nonessential intermediate metabolites and identify 
only the main reactions and key metabolites. Furthermore, because the 
reversibility of chemical reactions is essential to ensure the consistency 
of the network, genetic studies and biochemical databases (such as 
KeGG) are used to refine the development of the network and to develop 
a fully generalized network. At this stage, it is possible to build the 
stoichiometric matrix N that characterizes the metabolic network and 
finally apply constraint-based methods to validate the network or up
date the network structure when necessary. As mentioned previously, 
the proposed modeling strategy stands out from existing methods 
(classical top-down and bottom-up approaches) due to its minimal 
reliance on genome-scale reconstruction.

2.1. Core pathway selection

Although most metabolic routes are similar for most organisms, 
other pathways are very specific and can affect the whole metabolism. 
Essentially, organisms are broadly classified into different categories 
based on various characteristics, such as cell structure, mode of nutri
tion, reproduction, and evolutionary history. For instance, regarding the 
case study presented in Sec. 3, Arthrospira sp. PCC 8005 are photosyn
thetic prokaryotic cyanobacteria. Consulting literature and surveys is 
the most relevant way to gather information and identify the main 
metabolic routes forming the network. For this purpose, biochemistry 
textbooks, online biochemical databases, and genome sequences (when 
available) can be used.

When genome sequences are used, lumping techniques must be 
applied to reduce the final network’s dimensionality and complexity. In 
this study, lumping involves combining similar chemical species or re
actions into a single entry to simplify the mathematical modeling. The 
intermediate metabolites that are eliminated from the model are typi
cally those that do not serve as precursors for the synthesis of other 
essential compounds within the network. These metabolites serve as 
transient intermediates in specific pathways without contributing to 
broader connectivity or downstream processes. By removing these non- 
essential intermediates, the complexity of the network is reduced while 

retaining its core functional and mechanistic properties.
Furthermore, the reversibility of reactions in metabolic networks is a 

critical aspect that influences the efficiency, flexibility, and regulation of 
metabolic pathways simultaneously. Reversible reactions allow cells to 
adapt to environmental changes, maintain metabolic balance, and 
optimize resource utilization. For Arthrospira sp. PCC 8005, this aspect is 
particularly important to account for because cyanobacteria behave 
differently depending on light conditions. For instance, experimental 
observation demonstrates a large accumulation of lipids and carbohy
drates during the day and their consumption at night. In mathematical 
modeling, considering reaction reversibility is a standard approach in 
network reconstruction, and can be addressed in multiple ways. As 
mentioned in many studies [51–54,55], the most consistent approach is 
to define concentration ranges for metabolites and to evaluate the 
thermodynamic feasibility of flux solutions. In this study, the revers
ibility of the reactions is stated specifically based on the standard Gibbs 
free energy change ΔG’∘ and the enzyme regulation, i.e., the enzyme’s 
capability to catalyze a metabolic reaction in both directions depending 
on cellular conditions. For this purpose, databases BRENDA [56] and 
KEGG [57] are relevant and helpful resources. In addition, reaction 
reversibility can be tuned and cross-validated by using a 
constraint-based method to identify blocked reactions in the network. 
See Sec. 2.2.2 for more information.

2.2. Mathematical methods

After collecting a representative set of biochemical reactions, it is 
possible to infer the corresponding stoichiometric matrix of the network. 
In metabolic engineering, a metabolic network is defined by a m×n 
stoichiometric matrix N where m represents the number of internal 
metabolites, and n corresponds to the number of biochemical reactions. 
Based on the mass balance principle, the general equation of internal 
metabolite dynamics is expressed as follows: 

dC
dt

= Nv − μC (1) 

where C ∈ Rm denotes the vector of metabolite concentrations, v ∈ Rn is 
the vector of network fluxes and μC represents the dilution occurring 
due to the cell growth. As stated before, N∈Rm×n is the stoichiometric 
matrix where the element Nij is related to the metabolite i taking part in 
reaction j.

2.2.1. Elementary mass conservation
To ensure mass conservation, a variable z can be defined. It repre

sents the total number of relevant atoms involved in the metabolic re
actions and taking part in the cellular metabolism. Consider the general 
equation of internal metabolite dynamics in Eq. (1) for which the dilu
tion term is neglected because it does not affect the fundamental mass 
balance: 

dC
dt

= Nv(C) (2) 

A non-negative vector a is introduced, which contains information about 
the number of atoms (of carbon, nitrogen, or phosphorus) in each 
metabolite: 

z = aTC (3) 

By differentiating z with respect to time, it follows: 

dz
dt

= aTdC
dt

= aTNv(C) (4) 

Henceforth, if mass conservation applies, then z must be constant over 
time, so its time derivative is null: 

aTNv(C) = 0, ∀ v(C) → aTN = 0 (5) 
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Therefore, if the vector a exists, then there is mass conservation when 
constructing the network. It is important to note that for the mass bal
ance of biomass and macromolecules (proteins, nucleic acids, lipids), an 
average atomic composition must be considered in agreement with the 
monomerical composition used to state their biosynthetic reactions. 
Also, the elemental composition of biomass is highly variable over time 
due to factors such as species-specific differences, growth phase, and 
environmental conditions. This variability is critical and must be 
considered in metabolic analyses, as it directly influences the stoichi
ometry of biochemical reactions. However, an average elemental 
composition is often assumed as a practical simplification to ensure 
consistency and facilitate the verification of elementary mass conser
vation in such analyses.

2.2.2. Constraint-based methods
On the one hand, it is reasonable to assume that internal metabolites 

reach steady-state instantaneously in comparison with extracellular 
compounds so that their transient behavior can be neglected. On the 
other hand, the influence of dilution due to cell growth is negligible 
compared to the internal and exchange reaction rates so that μC van
ishes. Henceforth, by applying the pseudo-steady state assumption 
(QSSA), Eq. (1) becomes the following system of linear equations: 

Nv = 0 (6) 

In addition, network fluxes are often subject to positivity constraints 
assuming that direct reactions prevail over their reverse counterparts: 

v ≥ 0 (7) 

In any realistic large-scale metabolic model, there are more biolog
ical reactions than compounds, leading to under-determined systems for 
which no unique solution exists. Constraint-based methods may alle
viate this issue by applying additional constraints to limit the possible 
solutions and explore the solution space.

Flux balance analysis is undoubtedly the most popular constraint- 
based method that involves computing an optimal flux distribution v 
which maximizes or minimizes an objective function. This method as
sumes that cells regulate their fluxes in order to optimize some relevant 
biological objectives, e.g., maximization of biomass growth or the ATP 
production rate [12]. Despite the efficiency of FBA in finding optimal 
solutions, the latter may not correspond to the actual flux distribution, 
which, moreover, might not be unique.

Flux variability analysis is another constraint-based method that 
computes the maximal and minimal values of each reaction flux and so 
the intervals bounding internal fluxes [58]. In this way, it ensures that 
the actual flux distribution belongs to the interval. The extreme values of 
the set of admissible fluxes can be obtained using the FVA approach 
defined as a series of 2 n linear programs.

Flux coupling analysis is another framework for studying the topo
logical and flux connectivity features of genome-scale or large metabolic 
networks. This method requires the solution of a sequence of linear 
programs and enables the reduction of the dimensionality of the 
network by the identification of pairs of metabolic fluxes. To reduce the 
number of linear programs to solve, it is suggested to develop an algo
rithm that identifies only blocked reactions, defined as reactions inca
pable of carrying a flux under steady-state conditions for a particular 
uptake scenario. In the context of this study, blocked reactions are used 
to identify incomplete pathways, to pinpoint errors or omissions in the 
metabolic reconstruction, and also to detect potential issues with reac
tion reversibility. This last feature appears particularly interesting 
because the actual Gibbs free energy change depends on the actual 
concentrations of reactants and products, which can affect the reaction’s 
directionality. Furthermore, depending on the uptake scenario, it is 
feasible to identify inconsistencies in the network and redundant re
actions. Mathematically, the set of blocked reactions is identified by 
solving the following linear programming problem once for every flux: 

maximize vj (8) 

subject to
∑N

j=1
Nijvj = 0, ∀i ∈ M (9) 

vuptake
j ≤ vuptakemax

j , ∀j ∈ Ntransport (10) 

vj ≥ 0, ∀j ∈ N (11) 

It consists in the maximization of a particular flux vj for a metabolic 
network comprised of a set of M = {1,…,M} metabolites and a set of 
N = {1,…,N} metabolic reactions. This formulation requires that 
reversible reactions are expressed as two irreversible reactions in 
opposite directions, constraining all fluxes to positive values. Therefore, 
if the maximum value of the flux is zero, then the reaction is said to be 
unusable or blocked. In addition, it is possible to limit the uptake of 
resources to the network using the constraint (10), and the maximum 
uptake rate of any metabolite absent from the external medium is set to 
zero. Also, it is important to note that the solution of the linear program 
depends on the steady-state assumption, imposed uptake/secretion 
scenarios, growth requirements, and energy production requirements. 
Therefore, a blocked reaction does not necessarily mean that the reac
tion is incorrect, inconsistent, or irrelevant in describing the metabolism 
of the cell; it could only mean the reaction is not activated regarding the 
actual uptake/secretion scenario. To evaluate the merits and the effec
tive operation of flux coupling analysis, the algorithm has been per
formed on existing networks for the modeling of Tisochrysis lutea [59], 
Chlorella sorokiniana [60] and the mixotrophic growth of Chlorella sp. 
[61]. Results of the algorithm are consistent, demonstrating its reli
ability. Therefore, it can confidently be used for the current network 
under study.

The latter constraint-based techniques are complementary ap
proaches, even though the methods and contexts differ. For instance, 
FCA focuses on understanding reaction dependencies and relationships, 
while FVA aims to determine the range of feasible fluxes for each re
action. In this way, it is also possible to identify blocked reactions using 
FVA. However, while unusable reactions in FCA are considered in the 
context of network structure and inter-dependencies, they are consid
ered in the context of flux variability and constraint satisfaction in FVA. 
Also, depending on the size of the metabolic network, some of these 
methods are more appropriate than others. In particular, FCA is faster 
than FVA for larger networks [19]. For the present study, this set of 
methods allows the cross-validation of the results.

2.3. Cellular energy metabolism

Another focus of this study, in addition to the elaboration of mid-size 
metabolic network, is the modeling of the proton motive force (PMF), 
which is an electrochemical gradient that drives the synthesis of aden
osine triphosphate (ATP), a molecule that serves as the primary energy 
currency in cells.

Essentially, organisms can synthesize ATP through various mecha
nisms depending on the availability of oxygen and the presence of light. 
First of all, as it does in all living organisms, the microorganisms under 
study generate ATP through a process called substrate-level phosphor
ylation, where ATP is generated directly during the metabolic pathways 
such as glycolysis and the citric acid cycle. This metabolic process 
generates ATP directly through enzymatic reactions without the 
involvement of an electron transport chain or a proton gradient or 
membrane-bound ATP synthase complexes. Therefore, it provides a 
means to generate ATP quickly in the cytoplasm, particularly under 
anaerobic conditions or when light is not available for photosynthesis.

In aerobic organisms, ATP is also produced through a process called 
oxidative phosphorylation, where cells use oxygen as the final electron 
acceptor in the electron transport chain (ETC) to produce ATP. 
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Furthermore, in photosynthetic cells, ATP can be generated under light 
conditions through a process called photophosphorylation, involving 
the oxidation of H2O to O2, with NADP+ as the ultimate electron 
acceptor. In these cases, the synthesis of ATP is driven by the proton 
motive force, denoted PMF, which is a critical component of energy 
generation and is involved in various cellular processes. This electro
chemical gradient is generated across a particular membrane and is 
based on the chemiosmotic theory that states that the movement of 
electrons through the electron transport chain creates a proton gradient 
across a membrane, which drives the synthesis of ATP. As electrons 
move through the electron transport chain, protons (i.e., H+ ions) are 
pumped across the membrane. The pumping of protons creates a higher 
concentration of H+ on one side of the membrane, producing a proton 
gradient that will serve as the driving force for ATP synthesis from ADP 
and Pi, catalyzed by a membrane-bound ATP synthase complex. For the 
process of oxidative phosphorylation, the membrane is the mitochon
drial membrane in eukaryotic cells or the plasma membrane in pro
karyotic cells. For the process of photophosphorylation, the membrane 
is the thylakoid membrane of chloroplasts in eukaryotic cells or the 
thylakoid membrane of thylakoid-like membrane structures inside the 
prokaryotic cells that serve as sites for light-dependent reactions.

Even though the mechanism of ATP synthesis is well documented, 
the corresponding chemical reactions differ according to studies or 
biochemistry textbooks, which leads to confusion, particularly in 
mathematical modeling. In that respect, this study proposes to differ
entiate the cytoplasmic protons H+

n (namely H+) and the periplasmic 
protons H+

p to attempt to model the proton gradient (see Fig. 3). The 
synthesis of ATP from ADP and Pi catalyzed by a membrane-bound ATP 
synthase complex is thus given as follows: 

ADP + Pi + η H+
p →ATP + H2O + η H+

n (12) 

Where η represents the number of protons required to produce one 
molecule of ATP and varies depending on the specific process and 
pathway. In photosynthetic microorganisms, 4 protons are required to 
form one molecule of ATP (→η = 4).

Regarding photophosphorylation, the first step of light-driven 
phosphorylation is the so-called oxygenic photosynthesis, where light 
energy is captured by chlorophyll and other pigments to enable the 
conversion of CO2 and H2O into carbohydrates, releasing oxygen as a 
byproduct. During this process, electrons flow through a series of 
membrane-bound carriers, including cytochromes, quinones, and iron- 
sulfur proteins embedded in the thylakoid membrane (see Fig. 4). At 
least 8 photons must be absorbed to drive four electrons from H2O to 
NADP+, leading to the movement of 12 protons across the thylakoid 
membrane. In this way, the reactions relative to photophosphorylation 
are obtained: 

2 H2O + 2 NADP+ + 8 photons → O2 + 2 NADPH + 12 H+
p (13) 

ADP + Pi + 4 H+
p → ATP + H2O + 4 H+

n (14) 

Therefore, this proton gradient can produce approximately 3 molecules 

of ATP, which is in concordance with the approximate stoichiometry of 
photophosphorylation established in [62] stating experimental mea
surements yield values of about 3 ATP per O2 produced.

In cellular respiration, the synthesis of ATP also involves other co
factors (NADH and FADH2) that contribute to the generation of the 
proton gradient. The summary of the flow of electrons and protons 
through the four complexes of the respiratory chain is given in Fig. 5, 
and the detailed chemical reactions can be found in [62]. The oxidation 
of NADH induces the movement of 10 protons (through complexes I, III, 
and IV) across the membrane, while the oxidation of FADH2 results in 
the translocation of 6 protons (through complexes III and IV) across the 
membrane. Thus, the simplified equations are written as follows: 

NADH + 11 H+
n + 0.5 O2→NAD+ + 10 H+

p + H2O (15) 

FADH2 + 6 H+
n + 0.5 O2→FAD+ + 6 H+

p + H2O (16) 

ADP + Pi + 4 H+
p →ATP + H2O + 4 H+

n (17) 

Therefore, 2.5 molecules of ATP are produced per NADH, and 1.5 
molecules of ATP are produced per FADH2. The previous chemical re
actions can be compared with the global reactions related to photo
phosphorylation and oxidative phosphorylation, commonly found in the 
literature.

3. Case study of Arthrospira sp. PCC 8005

3.1. Core metabolic pathways

This section presents a simplified overview of the main metabolic 
routes of Arthrospira sp. under photoautotrophic conditions. These 
metabolic pathways and the corresponding chemical reactions are 
mainly derived from the reference textbook in biochemistry [62]. Unlike 
eukaryotic plants and algae that possess chloroplasts as distinct organ
elles within their cells, Arthrospira sp. PCC 8005 is a prokaryotic 
photosynthetic organism having specialized structures that are the sites 
for light-dependent reactions. These thylakoid-like membranes are 
spread throughout the cell’s cytoplasm and contain chlorophyll and 
other pigments necessary for photosynthesis.

The main metabolic pathways for photosynthetic organisms are the 
Calvin-Benson cycle (fluxes v2 to v5 in Table 2), the Embden-Meyerhof- 
Parnas pathway (fluxes v6 to v13), the Pentose Phosphate pathway 
(fluxes v18 to v26), the tricarboxylic acid cycle (fluxes v27 to v36) and the 
GS-GOGAT pathway (fluxes v38 to v43). Furthermore, as discussed pre
viously, the cellular energy metabolism is given by fluxes v120 to v123.

Another way to regulate ammonium level is via the urea cycle-like 
pathway. Although photosynthetic organisms primarily manage nitro
gen through the GS-GOGAT pathway, certain cyanobacteria, including 
Arthrospira sp. PCC 8005, possess the enzymatic machinery to synthesize 
urea under specific conditions (confirmed by the proteomic study in 
[43] and the analysis of the genome sequence of the similar strain 
NIES-39 [48]). Instead of serving as an excretory pathway, as in ureo
telic organisms, the urea cycle-like pathway in cyanobacteria likely 

Fig. 3. Schematic representation of the proton motive force across the mitochondrial membrane (left-hand side), the thylakoid membrane (center) and the plasma 
membrane (right-hand side).
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plays a role of nitrogen recycling and metabolic flexibility. The corre
sponding metabolic reactions are given by fluxes v44 to v49 in Table 2.

Most of the previous pathways (other than the Calvin-Benson cycle) 
are catabolic, meaning that the major metabolic fuels are degraded to 
enter the citric acid cycle and yield their electrons to the respiratory 
chain, allowing the synthesis of ATP. Nevertheless, anabolic pathways 
are also fundamental to describe the whole metabolism of an organism. 
Those pathways use chemical energy in the form of ATP, NADH or 
NADPH to synthesize cellular components from simple precursor mol
ecules. The most important anabolic pathways are the biosynthesis of 
carbohydrates, the biosynthesis of lipids, and the biosynthesis of amino 
acids and nucleotides. Finally, information pathways (proteins, DNA, 
and RNA metabolism) must be included in the metabolic network in 
order to form biomass. Most of the anabolic pathways can be found in 
[62], especially metabolic reactions characterizing the metabolism of 
amino-acids (fluxes v70 to v101 in Table 2) and the nucleotide salvage 
pathway (fluxes v102 to v118).

As highlighted in Sec. 1, a benefit of the methodology presented in 
this paper is its minimal reliance on genomic reconstructions (not al
ways accessible or reliable for lesser-studied or newly-isolated strains). 
As a consequence, in the first instance, and for the sole purpose of 
demonstrating feasibility (i.e., handling situations where genome se
quences are not available), simplified chemical reactions are considered 
for some anabolic pathways. Then, in the second instance, because 
genome sequences of similar strains are available, the latter will be 
exploited to better estimate the composition of the main components of 
cell material and to identify specific metabolic routes.

When genome sequences are not available, it can be assumed that the 
synthesis of carbohydrates begins with glucose-6-phosphate (G6P), an 
intermediate in glycolysis, which is converted into glucose-1-phosphate 
(G1P) by the enzyme phosphoglucomutase. Glucose-1-phosphate is then 
activated by nucleotides such as UTP to form UDP-glucose, a building 

block for synthesizing polysaccharides like glycogen, which serve as 
carbohydrate reserves in cells. Regarding the synthesis of lipids, it can be 
assumed that it starts with glycerol-3-phosphate (G3P), which is derived 
from glycolysis through the reduction of dihydroxyacetone phosphate. 
Then, glycerol-3-phosphate is acylated with two molecules of acyl-CoA, 
forming phosphatidic acid via acyltransferases. The acyl-CoA molecules 
are derived from fatty acids, which are themselves synthesized from 
acetyl-CoA, a product of central carbon metabolism. Phosphatidic acid is 
a precursor for various lipids. The latter can form triglycerides or 
alternatively be modified to produce phospholipids, key components of 
cell membranes. Finally, the elemental composition of proteins and 
biomass can be estimated using data from similar organisms. Experi
mental methods, like protein hydrolysis for amino acid profiles or sol
vent extraction for lipids, can also be useful to determine key 
components without genomic data. Therefore, if desired, all major 
metabolic pathways could be expressed without relying on genomic 
data.

However, in this particular case, because genome sequences are 
available for Arthrospira sp. (different strains), the composition of the 
main components of cell material (proteins, carbohydrates, lipids, and 
nucleic acids) and other macromolecules can be provided by genomic 
studies [47–49], as well as the average formula of biomass. Doing so, by 
using the genome sequence of S. platensis C1 PCC 9438 [47] and 
applying lumping techniques, the reactions describing the synthesis of 
carbohydrates are given by fluxes v133 to v146, the reactions for the 
synthesis of lipids are represented by fluxes v147 to v166 and the 
elemental composition of the macromolecules and the biomass is 
depicted by fluxes v173 to v178 in Table 2 (note that the stoichiometry 
will be adjusted later using experimental data). More specific pathways 
relative to the strain under study are also derived from this genome 
sequence and will be detailed in the sequel. For instance, the synthesis of 
chlorophyll, especially important for photosynthetic organisms, which is 

Fig. 4. Illustration of the process of photophosphorylation. Photosystem II (PSII) absorbs photons, splits water into O2, H+ protons and electrons while generating a 
proton gradient for ATP synthesis. Photosystem I (PSI) then uses the excited electrons to reduce NADP+ into NADPH.

Fig. 5. Flow of electrons and protons through the 4 complexes of the respiratory chain.
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depicted by fluxes v167 to v171.

3.2. Iterative procedure

As mentioned previously, the method proposed is iterative, and 
model refinement is possible by comparing model predictions with 
experimental observations, which may include available experimental 
data or well-established findings from literature or surveys. This section 
outlines a couple of iterations before obtaining a final draft for the 
metabolic network. Table 1 summarizes the iterations.

3.2.1. First iteration
The first iteration considers the core metabolic pathways described 

in Sec. 3.1. The reversibility of the reactions is analyzed by considering 
the standard Gibbs free energy change found in literature, and 
elementary-mass conservation is verified. This first iteration leads to a 
metabolic network with 157 metabolites and 167 reactions.

In order to check network consistency, as well as structural and to
pological network properties, constraint-based methods can be applied. 
For this purpose, a particular uptake scenario is considered, for which 
light, a carbon source (HCO−

3 ), and a nitrogen source (HNO−
3 ) are 

available. To avoid infeasible solutions, a set of exchange reactions is 
added to the network (fluxes v179 to v198), as well as a metabolic reaction 
that includes ATP maintenance requirements (flux v124) to simulate non- 
growth-associated energy demands. In addition, the objective function 
of the flux balance analysis should represent a biologically relevant 
process. Accordingly, a flux balance analysis with biomass maximization 
is suggested, and a flux coupling analysis is performed to prevent large 
computation times. After careful analysis, the network provides incon
sistent results. As a matter of fact, the biomass production rate obtained 
from the FBA is null, which is not expected considering the uptake 
scenario, and flux coupling analysis provides several blocked reactions, 
meaning there are gaps in the proposed network structure.

However, these inconclusive results can be explained. First, in the 
presence of light, cyanobacteria reduce atmospheric CO2 to triose sugars 
before converting them into glucose via the Calvin-Benson cycle and 
gluconeogenesis. The latter pathway is missing from the network and 
needs to be considered (addition of fluxes v14 to v17 - found in [62] - and 
adjustment of the reversibility of several reactions of the 
Embden-Meyerhof-Parnas pathway). Also, flux coupling analysis has 
revealed 39 blocked reactions, which are reactions unable to carry flux 
under the defined uptake scenario. These reactions often indicate gaps in 
the identified metabolic network. By inspecting the blocked reactions 
carefully, it is possible to identify missing pathways or transport steps 
necessary for the synthesis or utilization of intermediate metabolites. 
Indeed, addressing these gaps improves the accuracy and completeness 
of the network reconstruction, ensuring that all essential metabolic 
connections are captured. In this case, it appears that several reactions 
enabling the metabolism of amino acids and reactions belonging to the 
nucleotide salvage pathways are inactive, which explains why biomass 
production is impossible when applying FBA. The main reasons are the 
following: 

• The Lewis acid-base reaction v40 
Initially, the reaction v40 was set irreversible, assuming that 

ammonia NH3 primarily acts as a weak base and reacts with a proton 
H+ to form the ammonium NH+

4 . However, acid-base equilibria are 
inherently reversible, with the direction of the equilibrium shifting 
based on factors such as the concentration of reactants and products, 
the pH of the medium, the temperature, or the presence of other ions 
or compounds. While the equilibrium generally favors ammonium 
formation under physiological conditions, FCA revealed blocked 
reactions under the specific uptake scenario. Therefore, to ensure a 
more generalized and functional metabolic network, the reaction 
was modeled as reversible.

• The missing pathways of tetrahydrofolate metabolism and S fixation 
The formation of several amino acids requires H2S and tetrahy

drofolate (THF) or its byproducts (CHO-THF; CH2-THF; CH3-THF; 
DHF) as reactants. In addition, some of them also intervene in the 
nucleotide salvage pathway. Because the synthesis of such interme
diate metabolites is not considered in the network, this leads to 
several inactive reactions that are essential in the formation of 
biomass, which explains the result of the FBA. Therefore, they need 
to be synthesized to avoid incomplete pathways or gaps in the 
network reconstruction, leading to infeasible solutions. In that re
gard, the pathways of tetrahydrofolate metabolism and S fixation are 
added to the network using genome sequences and lumping tech
niques. The corresponding metabolic reactions are represented by 
fluxes v50 to v69 in Table 2.

3.2.2. Second iteration
After making the Lewis acid-base reaction reversible and adding the 

pathways of neoglucogenesis, tetrahydrofolate metabolism and S fixa
tion, the metabolic network is comprised of 170 metabolites and 191 
reactions. Elementary-mass conservation is still verified. For the same 
uptake scenario as the one considered in Sec. 3.2.1, FBA provides 
plausible results (e.g., the specific growth rate is non-zero), which 
highlights the benefits of the iterative procedure. More details on the 
outcomes of the metabolic analyses will be given in Sec. 4 and 5. 
However, FCA still identifies unusable/blocked reactions.

In this case, the unusable reactions are due to an excessively detailed 
representation of the metabolism of tetrahydrofolate. In this way, the 
reactions detailing the formation of dihydrofolate from glutamate, para- 
aminobenzoate, and GTP (fluxes v53 to v61 - obtained from the genome 
sequence in [47] and using lumping techniques) are not strictly neces
sary and can be removed from the network because these reactions 
involve intermediate metabolites that are not currently used in the 
synthesis of other essential components. However, it is worth noting that 
it depends on the scope and focus of the model. If more specific path
ways are added later on, these metabolites might become relevant and 
necessary. Henceforth, it is worth noticing that flux coupling analysis 
can be used as a method to identify blocked reactions and, thus, in
consistencies in the network structure, but also as a method to simplify 
over-detailed networks.

3.2.3. More iterations
The third iteration involves removing unnecessary reactions from the 

pathway of tetrahydrofolate metabolism. Besides, more iterations are 
needed to improve the structure of the metabolic network. In this regard, 
the fourth iteration consists of removing redundant reactions due to 
lumping techniques or the conflicting nomenclature of chemical com
pounds from the literature. The fifth iteration allows for discarding re
actions involving specific metabolites that do not take place in the 
biosynthesis of carbohydrates, lipids, proteins, or other macromole
cules. The sixth iteration allows the addition of cofactor metabolism 
reactions (fluxes v125 to v132 - found in [62]) and the reaction of for
mation of cyanophycin, a key biopolymer that stores excess nitrogen 
during periods of nitrogen abundance (flux v172). More iterations can be 

Table 1 
Information related to metabolic networks from the iterative procedure. The 
number of metabolites is comprised of internal metabolites and intracellular 
energetic cofactors, and the number of reactions includes the intracellular re
actions and the transport reactions.

Iteration # metabolites # reactions # blocked reactions

1 157 167 39
2 170 191 16
3 161 182 7
4 161 179 7
5 154 172 0
6 155 182 0
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made, but they are not detailed in this paper for the sake of clarity.

3.2.4. Final metabolic network
After several iterations, and a compromise between the level of detail 

and the size of the network, a final draft for the metabolic network can 
be obtained. It comprises 198 reactions (including intracellular re
actions and transport reactions) and 171 metabolites (including internal 
metabolites and intracellular energetic cofactors). For the sake of 
completeness and to enable the development of enriched networks in 
further research, the final network also considers the synthesis of spe
cific precursors taking place in the synthesis of important biomolecules 
and vitamins. The metabolic reactions of the network are given in 
Table 2. This network models the metabolism of the cyanobacterium 
under a photoautotrophic regime. This strain is particularly interesting 
due to its use in bioregenerative life-support systems whose main ob
jectives are to supply a crew with food, water, and oxygen while elim
inating waste.

4. In-silico validation

Validating the metabolic network using data is a crucial step to 
ensure its reliability and predictive power. In this section, in-silico data 
are used to assess the network’s consistency and functionality. There
after, the validation process is performed using real experimental data 
(see Sec. 5), allowing for a more accurate and biologically relevant 
refinement of the model.

As a first validation or when experimental data are not available, a 
common strategy for validating a metabolic network is to leverage in- 
silico data, i.e., data generated through computational models and 
simulations rather than obtained from experiments, and explore the 
behavior of the network under defined conditions. The idea is then to 
analyze whether the model’s predictions align with known biological 
behavior under imposed scenarios, such as nutrient uptake or environ
mental conditions, in order to assess the network’s validity. This 
approach enables identifying inconsistencies or unrealistic outputs, 

ensuring the network reflects biological reality and not just mathemat
ical consistency.

This study focuses only on the quasi-steady state under constant light 
regimes (i.e., continuous illumination), where the pseudo-steady-state 
assumption (QSSA) is valid, enabling the use of classical metabolic 
analysis tools. The metabolism adaptation under dynamic conditions, 
such as permanent fluctuating light, will be considered in future 
research. Nevertheless, even though this in-silico validation is static and 
assumes a steady-state framework, it offers insights into the photoau
totrophic metabolism of cyanobacteria under the day-night cycle. 
Indeed, during the day, when light levels are sufficient to meet carbon 
and energy demands, the autotrophic regime occurs. At night, the 
metabolism shifts to a heterotrophic regime, breaking down carbon 
storage molecules into precursor metabolites and energy for growth and 
maintenance. Otherwise, when light is not intense enough to meet the 
carbon and energy growth demands, the regime is said to be mixotrophic 
and is characterized by the consumption of carbon storage molecules. In 
this section, diverse uptake scenarios are explored to assess the robust
ness of the constructed network and quantify the intracellular mecha
nisms. Note that a flux map of the network had been created using 
CellDesigner [63] and can be provided upon request.

4.1. Day phase

The uptake scenarios considered in this section correspond to an 
autotrophic regime where cyanobacteria use sunlight, CO2, and water to 
produce organic compounds, among others. To ensure the metabolic 
consistency of the network, we first perform simulations under a strict 
carbon-only uptake scenario, where only light and HCO−

3 are provided, 
and no nitrogen source is available. In this case, as expected, biomass 
production is not feasible, since nitrogen is essential for the synthesis of 
amino acids and nucleotides. However, this scenario allows us to vali
date our metabolic model by ensuring that, under nitrogen limitation, 
only core metabolic pathways, such as glycolysis, the tricarboxylic acid 
cycle, and the pentose phosphate pathway, are activated. Then, to 

Fig. 6. Experimental specific growth rate (μexp) and specific growth rate from dFBA (μopt) for different feeding strategies: 30mM-N nitrate (top); 15mM-N nitrate 
+ 15mM-N nitrite (center) and 15mM-N nitrate + 15mM-N urea (bottom).
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further explore nitrogen metabolism, simulations are performed 
considering a nitrogen source in addition to light and CO2, enabling the 
activation of amino acid biosynthesis and macromolecule formation, 
which are required for biomass growth. Simulations are performed 
considering a light with an average wavelength of 600 nm and a power 
density of 100 W.m− 2, giving a photon flux density of approximately 
5.10− 4 E.m− 2.s− 1.

4.1.1. Carbon-only uptake scenario
In this section, energy and the carbon input are imposed to mimic an 

autotrophic regime. Flux variability analysis and flux balance analysis 
are performed to examine the intracellular mechanisms and predict the 
metabolic distribution of the fluxes under constant environmental con
ditions. In order to perform the flux balance analysis, the biomass 
growth is maximized. Even though biomass formation is infeasible 
under a carbon-only uptake scenario due to the absence of a nitrogen 
source, performing FBA with biomass optimization remains informative. 
This approach ensures that the model does not allocate flux toward 
biomass formation, confirming that elemental balance is properly 
enforced. In addition, it allows us to analyze how core metabolic path
ways operate under nitrogen starvation. By maintaining a consistent 
optimization objective across the different uptake scenarios, we can also 
assess how metabolic fluxes shift when nitrogen becomes available, 
providing insights into the network’s response to nutrient limitations.

After analysis of the flux map, it is observed that autotrophy is 

characterized by high fluxes in the photosynthetic pathways and by the 
activation of the Calvin-Benson cycle. Upper glycolysis operates in the 
glyconeogenic direction to produce carbohydrates and sugar precursor 
metabolites such as phosphoenolpyruvate, glucose-6-phosphate and 
ribose-5-phosphate, essential for growth. Also, the pentose phosphate 
pathway is in the reductive mode, and the citric acid cycle enables the 
formation of metabolite precursors for biomass growth. These results are 
in concordance with [64]. As detailed in Sec. 2.3, ATP is generated 
through glycolysis and the citric acid cycle on the one hand. On the other 
hand, ATP is driven by the proton motive force (depicted by the elec
trochemical gradient H+

p /H+
n ) and is synthesized via photophosphory

lation and oxidative phosphorylation. Besides, it can be shown that the 
influence of light on qualitative flux distribution is minimal as long as 
light remains the limiting factor. Otherwise, the excessive light energy is 
dissipated by means of photophosphorylation and the rest of the meta
bolism remains relatively unchanged in terms of flux distribution. In this 
way, it enhances the robustness of the photosynthetic pathways against 
light variation, maintaining a consistent energy supply to the meta
bolism. As expected, biomass is not produced (i.e., specific growth rate is 
zero) because no nitrogen source is provided to the organism.

4.1.2. Carbon-nitrogen uptake scenario
In this section, the day phase is still addressed, but a nitrogen source 

is provided to the organism, in addition to light and a carbon source. In 
this case, a net assimilation of 10 mol of nitrate NO−

3 is also considered, 

Fig. 7. Dynamic flux variability analysis under the 30mM-N nitrate feeding condition. Fluxes are expressed in mmol.g− 1
DW .h− 1.
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known as the preferential nitrogen source for cyanobacteria. After 
analysis of the corresponding flux map, the same conclusions as before 
can be drawn regarding the Calvin-Benson cycle, the Embden-Meyerhof- 
Parnas pathway, PPP and the routes of TCA. Also, it is interesting to note 
that glyceraldehyde-3-phosphate (G3P) is mainly produced via the 
Calvin-Benson cycle. The reductive PPP contributes a little, but glycol
ysis (i.e., the breakdown of fructose-1,6-bisphosphate) is not a major 
pathway for G3P production, particularly when the organism is in a 
photosynthetic state. Furthermore, for this uptake scenario, the nitrogen 
source allows the biosynthesis of amino acids and the activation of the 
nucleotide salvage pathway. Also, the GS-GOGAT pathway and the urea 
cycle-like pathway are involved in nitrogen assimilation. Consequently, 
biomass is produced.

4.2. Dark phase

The uptake scenarios analyzed below correspond to a heterotrophic 
regime, meaning that carbon storage molecules are degraded into pre
cursor metabolites and energy, essentially for growth and maintenance. 
To ensure the validity of the metabolic network and facilitate compar
isons with existing studies, the heterotrophic regime (equivalent to a 
chemotrophic regime in this case) is simulated by imposing a net 
assimilation of 100 mol of glucose, one of the organic carbon sources 
represented in the network. As in previous analyses, simulations are first 

conducted with glucose as the sole energy to examine the behavior of the 
network under carbon-only conditions and verify that core metabolic 
pathways function as expected under heterotrophic conditions. Subse
quently, a source of nitrogen is introduced to enable biosynthetic pro
cesses and biomass formation.

In heterotrophic conditions during the dark phase, optimizing 
biomass formation remains a relevant objective, as many cyanobacteria 
are capable of growth when both carbon and nitrogen sources are 
available. However, depending on the physiological state of the organ
ism, alternative metabolic objectives may be more biologically mean
ingful. For instance, if only a carbon source is available, cells are 
unlikely to prioritize growth and may focus on maximizing ATP pro
duction to sustain vital cellular functions. Another plausible objective 
could be the accumulation of storage compounds, such as glycogen, 
which would later serve as an energy reserve for the next light phase.

4.2.1. Carbon-only uptake scenario
Flux variability analysis and flux balance analysis are performed by 

setting the transport reaction of glucose and no light energy is consid
ered due to the dark phase. The corresponding flux map is not repre
sented for the sake of clarity, but the operation of the main pathways is 
resumed thereafter. The absence of light inhibits the activation of the 
Calvin-Benson cycle, which normally produces glucose from CO2 during 
the day phase (v2 = 0). When glucose is used as the carbon source, upper 

Fig. 8. Dynamic flux variability analysis under the 30mM-N nitrate feeding condition. Fluxes are expressed in mmol.g− 1
DW .h− 1.

M. Maton et al.                                                                                                                                                                                                                                  Biochemical Engineering Journal 221 (2025) 109770 

11 



glycolysis is in the downward direction, and the pentose phosphate 
pathway is in the oxidative mode. Also, the primary carbon flux is 
through the tricarboxylic acid cycle, which generates precursor metab
olites for growth and energy via oxidative phosphorylation. Indeed, 
during the night, ATP is not synthesized by photophosphorylation. 
Furthermore, when proceeding in the downward direction, glycolysis 
also contributes to energy demands, and it can be established that 
approximately 40 % of the carbon is lost through respiration [9]. These 
latter conclusions are supported by studies covering the modeling of 
photosynthetic bacteria.

4.2.2. Carbon-nitrogen uptake scenario
This uptake scenario deals with the dark phase, considering glucose 

as a carbon source and nitrate as a nitrogen source. Same conclusions 
can be drawn as in Sec. 4.1.2, except the Calvin-Benson cycle is not 
activated due to the absence of light. However, an interesting observa
tion can be made, which is in agreement with [64] modeling unicellular 
microalgae. As mentioned in the previous section, PPP is activated in the 
oxidative mode in heterotrophic regimes, mainly to fulfill the NADPH 
requirements, enabling the synthesis of macromolecules such as amino 

acids, nucleotides, and lipids. Nevertheless, after careful analysis of the 
flux map corresponding to carbon-nitrogen uptake scenario during dark 
phase, it is observed that the presence of NADPH/NAD+ trans
hydrogenase alpha subunit (EC number: 1.6.1.2) converting NADH to 
NADPH via v126 is usually preferred as source of NADPH, implying a 
nearly null flux into the pentose phosphate pathway via v18. This result 
contradicts experimental findings proving that PPP remains the primary 
route for NADPH synthesis. This allows highlighting the limitation of 
in-silico data and it reminds the importance of experimental data. This 
discrepancy can arise from missing regulatory mechanisms or over
simplified assumptions in the model. Also, the more data, the better the 
flux predictions provided by metabolic analyses. As a reminder, the 
identified metabolic network is underdetermined and a calcu
lability/observability analysis might be conducted to determine the 
number of fluxes that can be uniquely calculated [65]. In the present 
study, the inaccuracy pointed out can be corrected by limiting the flux of 
NADPH/NAD+ transhydrogenase complex in the FBA approach, leading 
to results consistent with experimental findings.

This in-silico validation confirms network consistency with meta
bolic predictions that reflect known biological behavior. Essentially, 

Fig. 9. Simplified flux map at a specific time instant. The flux map depicts the energy cellular metabolism, glycolysis and the pentose phosphate pathway.
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autotrophic and heterotrophic fluxes differ in the arrangement of the 
core carbon network including the Calvin-Benson cycle, the Embden- 
Meyerhof-Parnas pathway, the pentose phosphate pathway and the 
citric acid cycle. The remaining pathways involved in the biosynthesis of 
amino acids and macromolecules, and the information pathways show 
relatively consistent flux patterns regardless of growth conditions. In 
that respect, it suggests that anabolic processes operate independently of 
growth conditions, which is explained by the classical bow tie structure 
of microorganisms.

5. Experimental validation

Although in-silico validation helps identify potential gaps or errors in 
the network structure and confirm network consistency, in-silico data 
have limitations. Therefore, validating the network against experi
mental data is crucial to confirm that it accurately represents actual 
metabolic behavior.

5.1. Cell line and media

Data were provided by the Department of Proteomics and Microbi
ology of the University of Mons. More information relative to the cell 
line, the media, the bioreactor operation mode and the analysis methods 
can be found in [44].

The photo-bioreactor (PBR) started under batch mode, and contin
uous feeding started after 7 days (only data in continuous mode were 
provided). For the continuous PBR experiments, cyanobacteria were 
incubated in a radially illuminated 2 L cylindrical double jacket reactor 
under a constant light power density of 125 W.m− 2 with the agitation 
settled at 150 rpm. Note that this constant light regime is achieved using 
artificial lighting systems that provide uniform light conditions, mean
ing that the quasi-steady state assumption holds. The pH was automat
ically maintained at 8.5 with HCl (0.5 M), whereas the dilution rate was 
kept around 0.2 per day with fresh Zarrouk medium (30mM-N NaNO3 or 
a mixture of nitrogen sources). Experimental data in continuous mode 
are provided for different feeding strategies (30mM-N nitrate; 15mM-N 
nitrate + 15mM-N nitrite and 15mM-N nitrate + 15mM-N urea).

Experimental data include biomass and oxygen productivity; resid
ual nitrogen concentration (i.e., NO−

2 , NO−
3 , NH+

4 and urea); pigment 
concentration (i.e., chlorophylla); TC, TOC, TIC and TN in biomass and 
supernatant, and protein, lipid, and carbohydrate content in biomass. O2 
is monitored in exhaust gas (purging with air to prevent an increase in 
the oxygen saturation of the medium).

5.2. Numerical results

As mentioned previously, this study focuses on the quasi-steady state 
under constant light regimes, using the full spectrum of classical meta
bolic analysis tools. In this case, dynamic metabolic frameworks, such as 
dynamic flux balance analysis (dFBA) and dynamic flux variability 
analysis (dFVA), are used because experimental uptake and secretion 
rates are computed from concentration profiles over time. These 
methods extend traditional FBA and FVA by integrating time-dependent 
metabolic constraints. Several tests have been performed to validate the 
metabolic network. For direct validation, it is proposed to perform 
dFBA, dFVA and flux consistency checks via the analysis of a flux map 
and to compare the results of such analyses with published data from 
literature and databases.

Initially, a series of fundamental tests is conducted to verify the 
coherence of the network. For instance, flux variability analysis is ach
ieved by imposing only experimental uptake rates and ensuring exper
imental secretion rates belong to the predicted intervals. Also, dFBA 
with biomass optimization is performed by imposing both experimental 
uptake and secretion rates and ensuring that the predicted optimal value 
for the growth rate is higher than the measured growth rate. Doing these 

analyses is a prudent approach to enhance confidence in analyses and 
verify the model accurately reflects the organism’s growth potential and 
efficiency. Fig. 6 shows the experimental and optimized specific growth 
rates for different feeding strategies, highlighting the capability of the 
network to predict the growth rates.

In this study, the growth behavior of Arthrospira sp. PCC 8005 was 
investigated under continuous photobioreactor conditions using 
different nitrogen sources. Cultures were operated in steady-state 
continuous mode, where the specific growth rate μ is expected to be 
equal to the dilution rate D (= 0.083 h− 1) for all nitrogen regimes. For 
each feeding strategy, two growth profiles are compared: the experi
mental growth rate (μexp≈ D), and the growth rate predicted by the 
metabolic model assuming biomass maximization.

Across conditions, the model-predicted growth rates are higher than 
the experimental values, which is expected given that in vivo systems do 
not necessarily operate at maximal efficiency. Under nitrate-only and 
nitrate-nitrite conditions, the predicted growth closely matches the 
experimental value, suggesting that the cells are operating near their 
metabolic limits. This is consistent with the high energetic cost of nitrate 
and nitrite assimilation, which requires one or two reduction steps, 
respectively, prior to incorporation into biomass. The energetic burden 
of assimilating these oxidized nitrogen forms likely limits the cell’s 
ability to grow faster, which is consistent with the simulated optimal 
growth rates close to the dilution rate.

In contrast, the model predicts higher growth under the nitrate-urea 
condition, as examined in [43]. Urea assimilation bypasses the need for 
reduction and is therefore energetically more favorable, which explains 
the higher growth rate obtained by performing dFBA. However, the 
experimental growth rate is constrained by the fixed dilution rate of the 
PBR. This highlights the difference between metabolic potential, as 
predicted by the model, and the actual performance under controlled 
conditions. Furthermore, it is worth noting that such differences are 
commonly observed in constraint-based modeling, particularly for 
underdetermined networks, where optimized and experimental growth 
rates can differ by a factor of 1.5–3 depending on the system and con
ditions [12]. These results, particularly the strong agreement between 
predicted and measured growth rates under nitrate-only and 
nitrate-nitrite conditions underscore the model’s reliability in capturing 
the metabolic behavior of Arthrospira across diverse nitrogen sources.

Subsequently, all experimental constraints are applied, and dFVA is 
conducted to explore the range of possible fluxes through each reaction 
in the network. Fig. 7 and Fig. 8 present the dFVA results for some 
metabolic reactions under the 30mM-N nitrate feeding condition. Spe
cifically, reactions v27 to v36 are related to the tricarboxylic acid cycle 
and reactions v149 to v164 are related to the biosynthesis of lipids. Narrow 
flux intervals indicate higher prediction confidence, whereas broader 
intervals suggest uncertainty and imply that the model could benefit 
from additional constraints. In particular, when a flux interval narrows 
to a single value, it indicates that the corresponding flux is calculable, as 
defined through calculability analysis.

As expected, reactions involved in biomass precursor biosynthesis (e. 
g., lipids, amino acids, nucleotides, and carbohydrates) exhibit minimal 
variability, due to their direct coupling with the fixed specific growth 
rate. In contrast, reactions from central carbon metabolism (glycolysis, 
tricarboxylic acid cycle, and pentose phosphate pathway) and cellular 
energy metabolism display broader flux ranges, reflecting the intrinsic 
metabolic flexibility in carbon routing and cofactors regeneration (e.g., 
ATP, NADH, NADPH) within the network constraints. These trends align 
with biological expectations and support the structural and functional 
validity of the refined network. Moreover, these results are consistent 
with the findings of [47], who performed a similar FVA analysis on a 
genome-scale metabolic network (875 reactions), and also reported 
narrow intervals for anabolic pathways, and broader ranges for central 
carbon metabolism.

FBA at a specific time instant is also performed to analyze the flux 
distribution of the model through the flux map. It is performed by 
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imposing the experimental uptake and secretion rates and the growth 
rate while maximizing ATP production. After careful analysis of the flux 
map, it is observed that the regime is autotrophic and is characterized by 
high fluxes in the photosynthetic pathways and the activation of the 
Calvin-Benson cycle, as expected. More specifically, upper glycolysis 
operates in the glyconeogenic direction to produce carbohydrates and 
sugar precursor metabolites (PEP, G6P and R5P), essential for growth. 
The pentose phosphate pathway (PPP) is in the reductive mode and ATP 
synthesis is driven by the PMF and is synthesized via photophosphory
lation and oxidative phosphorylation (in addition to substrate-level 
phosphorylation), as discussed in Sec. 4.1.2. The simplified flux map is 
given in Fig. 9. Overall, the observed flux distribution not only reflects 
biologically plausible behavior but also aligns closely with established 
literature, underscoring the robustness of the model and its relevance in 
capturing key aspects of autotrophic metabolism.

6. Conclusion

This work proposes a constructive methodology for the identification 
of metabolic networks of intermediate size. The approach combines 
basic biological knowledge with a series of constraint-based methods in 
an iterative procedure, allowing progressive refinement of the network 
structure. A representative case study has been examined and the 
network structure and metabolic fluxes have been characterized in 
photosynthetically grown cells of Arthrospira spirulina platensis PCC 
8005. Validation using experimental data has enabled further refine
ment of the network, validating its ability to accurately reflect actual 
cellular behavior. The predictive capabilities of the model show strong 
agreement with experimental observations, reinforcing the biological 
relevance and robustness of the approach. This investigation highlights 
the value of the methodology in constructing consistent and biologically 
meaningful networks. Moreover, metabolic analysis reveals key physi
ological constraints, particularly in the balancing of reducing equiva
lents, while also exposing the limitations inherent to in-silico 
simulations. Compared to existing metabolic networks for photosyn
thetic organisms, the proposed network offers several advantages - 
notably, a more rigorous mathematical modeling of the proton motive 
force, as well as an improved representation of lipid and carbohydrate 
biosynthesis pathways in networks of comparable size.

Metabolic Network of Arthrospira Sp. PCC 8005

Table 2 
Metabolic reactions for the metabolism of Arthrospira spirulina platensis PCC 
8005 (photoautotrophic regime). Protons H+ involved in most metabolic re
actions correspond to H+

n .

Flux Metabolic reaction

Carbon entry ​
v1 HCO−

3 + H+→ CO2 + H2O
Calvin cycle ​
v2 3 ribulose− 1,5-biP + 3 CO2 + H2O → 6 3-P-glycerate
v3 6 3-P-glycerate + 6 ATP ↔ 6 1,3-biphosphoglycerate 

+ 6 ADP
v4 6 1,3-biphosphoglycerate + 6 NADPH,H+↔ 6 

glyceraldehyde− 3-P + 6 NADP+ + 6 Pi
v5 5 glyceraldehyde− 3-P → 3 ribose− 5-P + 2 Pi
Glycolysis ​
v6 glucose + ATP → glucose− 6-P + ADP
v7 glucose− 6-P ↔ fructose− 6-P
v8 fructose− 6-P + ATP → fructose− 1,6-biP + ADP
v9 fructose− 1,6-biP ↔ glyceraldehyde− 3- 

P + dihydroxyacetone-P
v10 glyceraldehyde− 3-P ↔ dihydroxyacetone-P
v11 glyceraldehyde− 3-P + NAD+ + Pi + ADP ↔ 3-P- 

glycerate + NADH,H+ + ATP
v12 3-P-glycerate ↔ P-enolpyruvate + H2O

(continued on next column)

Table 2 (continued )

Flux Metabolic reaction

v13 P-enolpyruvate + ADP → pyruvate + ATP
Neoglucogenesis ​
v14 glucose− 6-P + H2O → glucose + Pi
v15 fructose− 1,6-biP + H2O → fructose− 6-P + Pi
v16 oxaloacetate + GTP → P-enolpyruvate + GDP + CO2
v17 pyruvate + HCO−

3 + ATP → oxaloacetate + ADP + Pi
PPP ​
v18 glucose− 6-P + 2 NADP+ + H2O → ribose− 5-P + 2 

NADPH,H+ + CO2
v19 ribose− 5-P ↔ ribulose− 5-P
v20 ribose− 5-P + ATP → ribulose− 1,5-biP + ADP
v21 xylulose− 5-P ↔ ribulose− 5-P
v22 ribose− 5-P + xylulose− 5-P ↔ glyceraldehyde− 3- 

P + sedoheptulose− 7-P
v23 glyceraldehyde− 3-P + sedoheptulose− 7-P ↔ 

fructose− 6-P + erythrose− 4-P
v24 erythrose− 4-P + xylulose− 5-P ↔ fructose− 6- 

P + glyceraldehyde− 3-P
v25 dihydroxyacetone-P + erythrose− 4-P ↔ 

sedoheptulose− 1,7-biP
v26 sedoheptulose− 1,7-biP → sedoheptulose− 7-P + Pi
TCA cycle ​
v27 acetyl-CoA + oxaloacetate + H2O ↔ citrate + CoASH
v28 citrate ↔ H2O + cis-aconitate
v29 cis-aconitate + H2O ↔ isocitrate
v30 isocitrate + NAD+↔α-ketoglutarate + NADH, H+ +

CO2
v31 α-ketoglutarate ↔ succinate-semialdehyde + CO2
v32 succinate-semialdehyde + NAD+ + H2O ↔ succinate 

+ NADH + 2 H+

v33 succinate + GTP + CoASH ↔ succinyl-CoA + GDP 
+ Pi

v34 succinate + FAD+↔ fumarate + FADH2
v35 fumarate + H2O ↔ malate
v36 malate + NAD+↔ oxaloacetate + NADH,H+

Anaplerotic reaction ​
v37 P-enolpyruvate + CO2 + H2O ↔ oxaloacetate + Pi
GS-GOGAT pathway ​
v38 α-ketoglutarate + glutamine + NADPH,H+↔ 2 

glutamate + NADP+ + H2O
v39 glutamate + ATP + NH+

4 → glutamine + ADP + Pi 
+ H+

v40 NH3 + H+↔ NH+
4

v41 NH+
4 + α-ketoglutarate + NADPH,H+→ glutamate 

+ NADP+

v42 NO−
3 + 2 Fered + 2 H+↔ NO−

2 + 2 Feox + H2O
v43 NO−

2 + 6 Fered + 7 H+↔ NH+
4 + 6 Feox + 2 H2O

Urea cycle-like pathway ​
v44 H2O + urea → CO2 + 2 NH+

4
v45 2 ATP + NH+

4 + HCO−
3 → 2 ADP + Pi + carbamyl-P

v46 carbamyl-P + ornithine → citrulline + Pi
v47 ATP + citrulline + aspartate → AMP + PPi 

+ arginosuccinate
v48 arginosuccinate → fumarate + arginine
v49 arginine + H2O → ornithine + urea
S fixation ​
v50 ATP + SO2−

4 → APS + PPi
v51 APS + NADH,H+→ AMP + NAD+ + SO3
v52 2 H+ + 3 NADPH,H+ + SO3↔ H2S + 3 H2O + 3 

NADP+

THF metabolism ​
v53 GTP + H2O → formate + 7,8-dihydroneopterin− 3’- 

triP
v54 7,8-dihydroneopterin− 3’-triP + H2O → 

dihydroneopterin-P + PPi + 2 H+

v55 dihydroneopterin-P + H2O → dihydroneopterin + Pi
v56 dihydroneopterin → glycoaldehyde + 6- 

hydroxymethyl-dihydropterin
v57 6-hydroxymethyl-dihydropterin + ATP → 2- 

amino− 4-hydroxy− 6-hydroxymethyl− 7,8- 
dihydropteridine-biP + AMP + H+

v58 glutamine + chorismate ↔ glutamate + 4-amino− 4- 
deoxychorismate

v59 4-amino− 4-deoxychorismate ↔ para-aminobenzoate 
+ pyruvate + H+

(continued on next page)
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Table 2 (continued )

Flux Metabolic reaction

v60 para-aminobenzoate + 2-amino− 4-hydroxy− 6- 
hydroxymethyl− 7,8-dihydropteridine-biP → 7,8- 
dihydropteroate + PPi

v61 glutamate + 7,8-dihydropteroate + ATP → DHF + Pi 
+ ADP + H+

v62 DHF + NADPH,H+↔ THF + NADP+

v63 CH2-THF + NADP+↔ 5,10-CH=THF + NADPH,H+

v64 H2O + 5,10-CH=THF ↔ CHO-THF + H+

v65 CH2-THF + NADPH,H+↔ CH3-THF + NADP+

v66 CH3-THF + H2O ↔ 5-formyl-THF + H+

v67 5-formyl-THF + ATP + H2O → ADP + H+ + CHO- 
THF + Pi

v68 CHO-THF + H2O ↔ formate + H+ + THF
v69 ATP + formate + THF → ADP + CHO-THF + Pi
AA metabolism ​
v70 glutamate + ATP + NADPH,H+ + NADH,H+↔ 

proline + ADP + Pi + NADP+ + NAD+ + H2O
v71 glutamate + acetyl-CoA → N-acetylglutamate 

+ CoASH
v72 N-acetylglutamate + ATP + NADPH,H+ + glutamate 

+ H2O → ornithine + acetate + NADP+ + ADP + Pi 
+ α-ketoglutarate

v73 glutamine + 2 ATP + CO2 + 2 H2O → carbamyl- 
P + glutamate + 2 ADP + Pi

v74 oxaloacetate + glutamate ↔α-ketoglutarate 
+ aspartate

v75 aspartate + glutamine + ATP → asparagine 
+ glutamate + AMP + PPi

v76 aspartate + ATP + NADPH,H+→ aspartate 
semialdehyde + ADP + NADP+ + Pi

v77 aspartate semialdehyde + pyruvate + succinyl-CoA 
+ glutamate + NADPH,H+ + H2O ↔α-ketoglutarate 
+ diaminopimelate + succinate + CoASH + NADP+

v78 diaminopimelate + H+↔ lysine + CO2
v79 aspartate semialdehyde + NADPH,H+↔ homoserine 

+ NADP+

v80 homoserine + ATP + H2O → threonine + ADP + Pi
v81 succinyl-CoA + homoserine + cysteine ↔ 

homocysteine + pyruvate + NH3 + succinate 
+ CoASH

v82 homocysteine + CH3-THF ↔ methionine + THF
v83 serine + acetyl-CoA + H2S + H+↔ cysteine + CoASH 

+ acetate
v84 serine → pyruvate + NH+

4
v85 threonine ↔α-ketobutyrate + NH+

4 + H2O
v86 threonine + NAD+ + CoASH → glycine + NADH,H+

+ acetyl-CoA
v87 pyruvate + glutamate + α-ketobutyrate + NADPH, 

H+↔ isoleucine + α-ketoglutarate + NADP+ + CO2 
+ H2O

v88 pyruvate + glutamate → alanine + α-ketoglutarate
v89 2 pyruvate + NADPH,H+↔ oxoisovalerate + NADP+

+ CO2 + H2O
v90 glutamate + oxoisovalerate ↔ valine 

+ α-ketoglutarate
v91 acetyl-CoA + glutamate + oxoisovalerate + NAD+ +

H2O ↔ leucine + α-ketoglutarate + CoASH + NADH, 
H+ + CO2

v92 3-P-glycerate + glutamate + NAD+ + H2O ↔ serine 
+ α-ketoglutarate + NADH,H+ + Pi

v93 serine + THF ↔ glycine + CH2-THF + H2O
v94 2 P-enolpyruvate + erythrose− 4-P + ATP + NADPH, 

H+→ chorismate + ADP + NADP+ + 4 Pi
v95 ribose− 5-P + ATP → 5’-P-ribosyl− 1PP + AMP
v96 5’-P-ribosyl− 1PP + glutamine + serine + chorismate 

↔ tryptophan + glyceraldehyde− 3-P + pyruvate 
+ glutamate + PPi + CO2 + 2 H2O

v97 glutamate + chorismate → phenylalanine 
+ α-ketoglutarate + CO2 + H2O

v98 phenylalanine + O2 + NADH,H+→ tyrosine + NAD+

+ H2O
v99 glutamate + chorismate + NAD+↔ tyrosine 

+ α-ketoglutarate + NADH,H+ + CO2
v100 5’-P-ribosyl− 1PP + glutamine + ATP + 2 NAD+ +

3 H2O → histidine + α-ketoglutarate + ACR + 2 
NADH,H+ + 2 PPi + Pi

(continued on next column)

Table 2 (continued )

Flux Metabolic reaction

v101 glycine + NAD+ + THF ↔ NH+
4 + CH2-THF + NADH, 

H+ + CO2
Nucleotide salvage 

pathway
​

v102 5’-P-ribosyl− 1PP + carbamyl-P + aspartate 
+ NAD+→ UMP + NADH,H+ + PPi + Pi + CO2 + H2O

v103 UMP + ATP → UDP + ADP + H+

v104 UDP + ATP ↔ UTP + ADP + H+

v105 UTP + ATP + glutamine → CTP + ADP + Pi 
+ glutamate

v106 CMP + ATP ↔ CDP + ADP + H+

v107 CDP + ATP ↔ CTP + ADP + H+

v108 5’-P-ribosyl− 1PP + 2 glutamine + aspartate 
+ glycine + 4 ATP + CHO-THF + CO2 + 2 H2O → 
ACR + fumarate + 2 glutamate + 4 ADP + THF + PPi 
+ 4 Pi

v109 ACR + CHO-THF ↔ IMP + THF + H2O
v110 IMP + ATP + NAD+ + glutamine + 2 H2O → GMP 

+ glutamate + AMP + NADH,H+ + PPi
v111 GMP + ATP → GDP + ADP + H+

v112 GDP + ATP ↔ GTP + ADP + H+

v113 aspartate + IMP + GTP ↔ AMP + fumarate + GDP 
+ Pi

v114 UDP + 2 ATP + CH2-THF + NADPH,H+→ 2 ADP 
+ dTTP + DHF + NADP+ + Pi

v115 dTDP + ATP → dTTP + ADP + H+

v116 CDP + ATP + NADPH,H+→ dCTP + ADP + NADP+ +

H2O
v117 GDP + ATP + NADPH,H+→ dGTP + ADP + NADP+ +

H2O
v118 ATP + NADPH,H+↔ dATP + NADP+ + H2O
ATP synthesis and 

cofactor metabolism
​

v119 2 Fered + 2 H+ + NADP+→ 2 Feox + NADPH,H+

v120 2 H2O + 2 NADP+ + 8 photons → O2 + 2 NADPH 
+ 12 H+

p

v121 NADH + 11 H+
n + 0.5 O2→ NAD+ + 10 H+

p + H2O
v122 FADH2 + 6 H+

n + 0.5 O2→ FAD+ + 6 H+
p + H2O

v123 ADP + Pi + 4 H+
p → ATP + H2O + 4 H+

n

v124 ATP + H2O ↔ ADP + Pi + MAINT
v125 ATP + AMP ↔ 2 ADP + H+

v126 NADPH + NAD+↔ NADP+ + NADH
v127 PPi + H2O → 2 Pi
v128 ATP + 2 H2O → AMP + 2 Pi
v129 NAD+ + H+ + 2 e− ↔ NADH
v130 NADP+ + H+ + 2 e− ↔ NADPH
v131 FAD+ + 2 H+ + 2 e− ↔ FADH2
v132 2 H2O ↔ O2 + 4 H+ + 4 e−

Carbohydrates synthesis ​
v133 glucose− 6-P + UTP → UDP-glucose + PPi
v134 UDP-glucose → UDP-galactose
v135 fructose− 6-P + GTP → GDP-mannose + PPi
v136 GDP-mannose + NADPH,H+→ GDP-fucose + NADP+

+ H2O
v137 glucose− 6-P + dTTP + NADPH,H+→ dTDP- 

rhamnose + PPi + NADP+ + H2O
v138 UDP-glucose + 2 NAD+ + H2O → UDP-glucuronate 

+ 2 NADH,H+

v139 UDP-glucuronate ↔ UDP-galacturonate
v140 UDP-glucuronate + H+→ UDP-xylose + CO2
v141 fructose− 6-P + glutamine + acetyl-CoA + UTP → 

UDP-N-acetylglucosamine + glutamate + CoASH 
+ PPi

v142 UDP-N-acetylglucosamine + glutamate + 3 alanine 
+ P-enolpyruvate + NADPH,H+ + diaminopimelate 
+ 4 ATP → UDP-N-acetylpentapeptide + NADP+ + 4 
ADP + 5 Pi

v143 UDP-N-acetylglucosamine + P-enolpyruvate + ATP 
+ CTP + 3 H2O → CMP-N-acetylneuraminate + UDP 
+ ADP + PPi + 2 Pi

v144 glucose− 6-P + H2O → cyclitolav + Pi
v145 UDP-N-acetylglucosamine + UDP-N- 

acetylpentapeptide + 5 glycine → peptidoglycanav 
+ alanine + UMP + UDP + Pi

v146 glucose− 6-P + ATP → ADP + PPi + glycogen

(continued on next page)
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Table 2 (continued )

Flux Metabolic reaction

Lipids synthesis ​
v147 pyruvate + NAD+ + CoASH → acetyl-CoA + CO2 

+ NADH,H+

v148 acetyl-CoA + H2O → acetate + CoASH + H+

v149 dihydroxyacetone-P + NADH,H+↔ glycerol− 3- 
P + NAD+

v150 acetyl-CoA + ACP → acetyl-ACP + CoASH
v151 acetyl-CoA + ATP + CO2 + H2O → malonyl-CoA 

+ ADP + Pi
v152 acetyl-ACP + 7 malonyl-CoA + 14 NADPH,H+→ 

palmitic-ACP + 7 CoASH + 14 NADP+ + 7 CO2 
+ 7 H2O

v153 malonyl-CoA + palmitic-ACP + 2 NADPH,H+→ 
stearic-ACP + CoASH + 2 NADP+ + CO2 + H2O

v154 palmitic-ACP + NADP+→ palmitoleic-ACP + NADPH, 
H+

v155 stearic-ACP + NADH,H+→ oleic-ACP + NAD+

v156 oleic-ACP + NADH,H+→ linoleic-ACP + NAD+

v157 linoleic-ACP + NADH,H+→γ-linolenic-ACP + NAD+

v158 glycerol− 3-P + 0.922 palmitic-ACP + 0.212 
palmitoleic-ACP + 0.059 stearic-ACP + 0.101 oleic- 
ACP + 0.271 linoleic-ACP + 0.435 γ-linolenic-ACP → 
phosphatidic acidav + 2 ACP

v159 phosphatidic acidav + H2O → diacylglycerolav + Pi
v160 diacylglycerolav + UDP-glucose → 

monogalactosyldiacylglycerol + UDP
v161 2 monogalactosyldiacylglycerol → 

digalactosyldiacylglycerol + diacylglycerolav
v162 diacylglycerolav + UDP-sulfoquinovose → 

sulfoquinovosyldiacylglycerol + UDP
v163 phosphatidic acidav + glycerol− 3-P + CTP → glycerol 

+ CMP + PPi + Pi
v164 glycerol− 3-P + 0.956 palmitic-ACP + 0.573 

palmitoleic-ACP + 0.299 stearic-ACP + 0.425 oleic- 
ACP + 0.377 linoleic-ACP + 0.370 γ-linolenic-ACP 
+ H2O → triglycerideav + 3 ACP + Pi

v165 UDP-glucose + SO3 + H+→ H2O + UDP- 
sulfoquinovose

v166 acetate + CoASH + ATP → acetyl-CoA + AMP + PPi
Chlorophyll synthesis ​
v167 8 glutamate + 8 ATP + 8 NADPH,H+ + 2.5 O2→ 

protoporphyrin + 8 ADP + 8 Pi + 21 H2O + 8 NADP+

+ 6 CO2 + 4 NH3
v168 12 acetyl-CoA + 11 NADPH,H+ + 12 ATP + 4 H2O → 

phytyl-PP + 12 CoASH + 11 NADP+ + 12 ADP + 4 Pi 
+ 4 CO2 + 3 PPi

v169 methionine + ATP + H2O → S-ad.methionine + PPi 
+ Pi

v170 protoporphyrin + Mg2+ + S-ad.methionine + 5 
NADPH,H+ + 3 O2 + phytyl-PP + ATP → chlorophyll 
+ 3 H+ + S-ad.homocysteine + 5 NADP+ + 4 H2O 
+ PPi + ADP + Pi

v171 S-ad.homocysteine + ATP + H2O → homocysteine 
+ AMP + ADP

Nitrogen stockage ​
v172 aspartate + arginine → cyanophycin + H2O
Synthesis of biomass 

macromolecules
​

v173 0.732 dTDP-rhamnose + 0.124 UDP-glucose + 0.051 
cyclitolav + 0.030 peptidoglycanav + 0.043 glycogen 
+ 0.022 CMP-N-acetylneuraminate + 5 ATP → 
carbohydrateav + 5 ADP + 5 Pi + 0.732 dTDP 
+ 0.124 UDP + 0.022 CMP

v174 0.058 isoleucine + 0.094 leucine + 0.036 lysine 
+ 0.018 methionine + 0.039 phenylalanine + 0.054 
threonine + 0.009 tryptophan + 0.076 valine 
+ 0.053 arginine + 0.014 histidine + 0.101 alanine 
+ 0.098 aspartate + 0.132 glutamate + 0.007 
cysteine + 0.086 glycine + 0.038 proline + 0.054 
serine + 0.033 tyrosine + 2 GTP + 55 ATP + 2 H2O 
→ proteinav + 2 GDP + 55 ADP + PPi + 55 Pi

v175 0.320 monogalactosyldiacylglycerol + 0.131 
digalactosyldiacylglycerol + 0.147 
sulfoquinovosyldiacylglycerol + 0.216 glycerol 
+ 0.186 triglycerideav + ATP → lipidav + ADP + Pi

(continued on next column)

Table 2 (continued )

Flux Metabolic reaction

v176 0.262 ATP + 0.322 GTP + 0.216 UTP + 0.200 CTP 
+ 2 ATP → RNAav + PPi + 2 ADP + 2 Pi

v177 0.279 dTTP + 0.222 dCTP + 0.222 dGTP + 0.279 
dATP + 5 ATP → DNAav + PPi + 5 ADP + 5 Pi

v178 0.8404 proteinav + 0.1230 carbohydrateav + 0.0182 
lipidav + 0.0130 RNAav + 0.0039 DNAav + 0.0016 
chlorophyll + 97 ATP → biomassav + 97 ADP + 97 Pi

Transport reactions ​
v179 HCO−

3 ext ↔ HCO−
3

v180 NO−
2 ext ↔ NO−

2
v181 photon ext→ photon
v182 CO2 ext↔ CO2
v183 O2 ext↔ O2
v184 H2Oext↔ H2O
v185 Piext↔ Pi
v186 NO−

3 ext ↔ NO−
3

v187 SO2−
4 ext ↔ SO2−

4
v188 NH+

4 ext ↔ NH+
4

v189 Mg2+ext↔ Mg2+

v190 H+ext↔ H+

v191 urea ext↔ urea
v192 glucose ext→ glucose
v193 chlorophyll → chlorophyll ext
v194 cyanophycin → cyanophycin ext
v195 carbohydrate ↔ carbohydrate ext
v196 lipid ↔ lipid ext
v197 biomass → biomass ext
v198 MAINT → MAINT ext
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